Methanol

References

Equation of State

L. Piazza and R. Span. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilib., 349:12–24, 2013. doi:10.1016/j.fluid.2013.03.024.

Thermal Conductivity

E. A. Sykioti, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42:043101, 2013. doi:10.1063/1.4829449.

Viscosity

Hong Wei Xiang, Arno Laesecke, and Marcia L. Huber. A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data, 35(4):1597–1:24, 2006. doi:10.1063/1.2360605.

Melting Line

K.M. de Reuck and R.J.B. Craven. Methanol: International Thermodynamic Tables of the Fluid State - 12. Blackwell Scientific Publications, 1993.

Surface Tension

A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.

Aliases

methanol, METHANOL

Fluid Information

Parameter, Value  
General  
Molar mass [kg/mol] 0.03204216
CAS number 67-56-1
ASHRAE class UNKNOWN
Formula \(CH_{4}O\)
Acentric factor 0.5720322
InChI InChI=1/CH4O/c1-2/h2H,1H3
InChIKey OKKJLVBELUTLKV-UHFFFAOYAX
SMILES CO
ChemSpider ID 864
2D image http://www.chemspider.com/ImagesHandler.ashx?id=864
Limits  
Maximum temperature [K] 620.0
Maximum pressure [Pa] 500000000.0
Triple point  
Triple point temperature [K] 175.61
Triple point pressure [Pa] 0.186763812414
Critical point  
Critical point temperature [K] 512.5
Critical point density [kg/m3] 273.0
Critical point density [mol/m3] 8520.02486724
Critical point pressure [Pa] 8215850.0
   

REFPROP Validation Data

Note

This figure compares the results generated from CoolProp and those generated from REFPROP. They are all results obtained in the form \(Y(T,\rho)\), where \(Y\) is the parameter of interest and which for all EOS is a direct evaluation of the EOS

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/Methanol.png

Consistency Plots

The following figure shows all the flash routines that are available for this fluid. A red + is a failure of the flash routine, a black dot is a success. Hopefully you will only see black dots. The red curve is the maximum temperature curve, and the blue curve is the melting line if one is available for the fluid.

In this figure, we start off with a state point given by T,P and then we calculate each of the other possible output pairs in turn, and then try to re-calculate T,P from the new input pair. If we don’t arrive back at the original T,P values, there is a problem in the flash routine in CoolProp. For more information on how these figures were generated, see CoolProp.Plots.ConsistencyPlots

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/Methanol1.png