R1234ze(Z)

References

Equation of State

Ryo Akasaka, Yukihiro Higashi, and Shigeru Koyama. A Fundamental Equation of State For Low-GWP Refrigerant HFO-1234ze(Z). In 4th IIR Conference on ThermophysicalProperties and Transfer Processes of Refrigerants, Delft, The Netherlands, 2013, TP–052. 2013.

Surface Tension

Chieko Kondou, Ryuichi Nagata, Noriko Nii, Shigeru Koyama, and Yukihiro Higashi. Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E). Int. J. Refrig., 53:80–89, 2015. doi:10.1016/j.ijrefrig.2015.01.005.

Aliases

R1234ZE(Z)

Fluid Information

Parameter, Value  
General  
Molar mass [kg/mol] 0.1140415928
CAS number 29118-25-0
ASHRAE class  
Formula \(C_{3}F_{4}H_{2}\)
Acentric factor 0.3274
InChI InChI=1/C3H2F4/c4-2-1-3(5,6)7/h1-2H/b2-1-
InChIKey CDOOAUSHHFGWSA-UPHRSURJBR
SMILES F[C@H]=CC(F)(F)F
ChemSpider ID 9291157
2D image http://www.chemspider.com/ImagesHandler.ashx?id=9291157
Limits  
Maximum temperature [K] 430.0
Maximum pressure [Pa] 6000000.0
Triple point  
Triple point temperature [K] 273.0
Triple point pressure [Pa] 67802.9393592
Critical point  
Critical point temperature [K] 423.27
Critical point density [kg/m3] 470.0
Critical point density [mol/m3] 4121.30336363
Critical point pressure [Pa] 3533000.0
   

REFPROP Validation Data

Note

This figure compares the results generated from CoolProp and those generated from REFPROP. They are all results obtained in the form \(Y(T,\rho)\), where \(Y\) is the parameter of interest and which for all EOS is a direct evaluation of the EOS

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/R1234ze(Z).png

Consistency Plots

The following figure shows all the flash routines that are available for this fluid. A red + is a failure of the flash routine, a black dot is a success. Hopefully you will only see black dots. The red curve is the maximum temperature curve, and the blue curve is the melting line if one is available for the fluid.

In this figure, we start off with a state point given by T,P and then we calculate each of the other possible output pairs in turn, and then try to re-calculate T,P from the new input pair. If we don’t arrive back at the original T,P values, there is a problem in the flash routine in CoolProp. For more information on how these figures were generated, see CoolProp.Plots.ConsistencyPlots

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/R1234ze(Z)1.png