R124

References

Equation of State

B. de Vries, R. Tillner-Roth, and H.D. Baehr. Thermodynamic Properties of HCFC 124. In 19th International Congress of Refrigeration, The Hague, The Netherlands, 582–589. 1995.

Thermal Conductivity

Marcia L. Huber, Arno Laesecke, and Richard A. Perkins. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Ind. Eng. Chem. Res., 42:3163–3178, 2003. doi:10.1021/ie0300880.

Viscosity

Ian H. Bell and Arno Laesecke. Viscosity of refrigerants and other working fluids from residual entropy scaling . In 16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016. 2016.

Surface Tension

A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.

Fluid Information

Parameter, Value  
General  
Molar mass [kg/mol] 0.1364762
CAS number 2837-89-0
ASHRAE class A1
Formula \(C_{2}ClF_{4}H\)
Acentric factor 0.288095084221
InChI InChI=1/C2HClF4/c3-1(4)2(5,6)7/h1H
InChIKey BOUGCJDAQLKBQH-UHFFFAOYAT
SMILES C(C(F)(F)F)(F)Cl
ChemSpider ID 16841
2D image http://www.chemspider.com/ImagesHandler.ashx?id=16841
Limits  
Maximum temperature [K] 470.0
Maximum pressure [Pa] 40000000.0
Triple point  
Triple point temperature [K] 120.0
Triple point pressure [Pa] 0.0267386236179
Critical point  
Critical point temperature [K] 395.425
Critical point density [kg/m3] 560.0
Critical point density [mol/m3] 4103.27954618
Critical point pressure [Pa] 3624295.0
   

REFPROP Validation Data

Note

This figure compares the results generated from CoolProp and those generated from REFPROP. They are all results obtained in the form \(Y(T,\rho)\), where \(Y\) is the parameter of interest and which for all EOS is a direct evaluation of the EOS

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/R124.png

Consistency Plots

The following figure shows all the flash routines that are available for this fluid. A red + is a failure of the flash routine, a black dot is a success. Hopefully you will only see black dots. The red curve is the maximum temperature curve, and the blue curve is the melting line if one is available for the fluid.

In this figure, we start off with a state point given by T,P and then we calculate each of the other possible output pairs in turn, and then try to re-calculate T,P from the new input pair. If we don’t arrive back at the original T,P values, there is a problem in the flash routine in CoolProp. For more information on how these figures were generated, see CoolProp.Plots.ConsistencyPlots

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as... or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/R1241.png