CycloHexane#

References#

Equation of State#

Yong Zhou, Jun Liu, Steven G. Penoncello, and Eric W. Lemmon. An Equation of State for the Thermodynamic Properties of Cyclohexane. J. Phys. Chem. Ref. Data, 43:043105–1:12, 2014. doi:10.1063/1.4900538.

Viscosity#

U. Tariq, A. R. B. Jusoh, N. Riesco, and V. Vesovic. Reference Correlation of the Viscosity of Cyclohexane from the Triple Point to 700 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 43(3):033101–1:18, 2014. doi:10.1063/1.4891103.

Melting Line#

S. G. Penoncello, R. T Jacobsen, and A. R. H. Goodwin. A Thermodynamic Property Formulation for Cyclohexane. Int. J. Thermophys., 16(2):519–531, 1995. doi:10.1007/BF01441918.

Surface Tension#

A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.

Aliases#

Cyclohexane, CYCLOHEXANE, CYCLOHEX

Fluid Information#

Parameter, Value

General

Molar mass [kg/mol]

0.08415948000000001

CAS number

110-82-7

ASHRAE class

UNKNOWN

Formula

C6H12

Acentric factor

0.20926

InChI

InChI=1S/C6H12/c1-2-4-6-5-3-1/h1-6H2

InChIKey

XDTMQSROBMDMFD-UHFFFAOYSA-N

SMILES

C1CCCCC1

ChemSpider ID

7787

Limits

Maximum temperature [K]

700.0

Maximum pressure [Pa]

250000000.0

Triple point

Triple point temperature [K]

279.47

Triple point pressure [Pa]

5240.204376932312

Critical point

Critical point temperature [K]

553.6000188557726

Critical point density [kg/m3]

271.329990899617

Critical point density [mol/m3]

3223.9979488896197

Critical point pressure [Pa]

4080525.8791621355

REFPROP Validation Data#

Note

This figure compares the results generated from CoolProp and those generated from REFPROP. They are all results obtained in the form \(Y(T,\rho)\), where \(Y\) is the parameter of interest and which for all EOS is a direct evaluation of the EOS

You can download the script that generated the following figure here: (link to script), right-click the link and then save as… or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/CycloHexane.png

Consistency Plots#

The following figure shows all the flash routines that are available for this fluid. A red + is a failure of the flash routine, a black dot is a success. Hopefully you will only see black dots. The red curve is the maximum temperature curve, and the blue curve is the melting line if one is available for the fluid.

In this figure, we start off with a state point given by T,P and then we calculate each of the other possible output pairs in turn, and then try to re-calculate T,P from the new input pair. If we don’t arrive back at the original T,P values, there is a problem in the flash routine in CoolProp. For more information on how these figures were generated, see CoolProp.Plots.ConsistencyPlots

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as… or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/CycloHexane1.png

Superancillary Plots#

The following figure shows the accuracy of the superancillary functions relative to extended precision calculations carried out in C++ with the teqp library. The results of the iterative calculations with REFPROP and CoolProp are also shown.

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as… or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/CycloHexane2.png